Brain Tumor Segmentation Using Fuzzy Affinity and Community Structure Detection

نویسندگان

  • Wankai Deng
  • He Deng
  • Jianguo Liu
چکیده

The segmentation of brain tumor in MR images is very essential in computer aided diagnosing, which has become a focus in medical research. In this paper, a new segmentation approach of brain tumor which combines the fuzzy affinity technology with the community structure detection technique based on the node similarity is proposed. The presented method consists of the standardization step, the requirement step of the fuzzy affinity, the detection step of the community structure, and a manual verification step, and which can be used in a computer aided diagnosing system. Qualitative and quantitative experiment results show that the proposed algorithm is robust, rapid and accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

REGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY

Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...

متن کامل

P14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering

Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...

متن کامل

The Automated Brain Tumor Detection Based On Fuzzy Clustering Segmentation Approach

This Brain tumors are the mechanisms to control normal cells randomly and uncontrolled multiplication of cells in which growth is an abnormal mass of tissue. A tumor growth takes place within the skull and interferes with normal brain activity. Therefore, the first step is very important in tumor detection. Various techniques have been developed to detect tumors in the brain. Most crucial task ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011